SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

Carol S. Woodward

Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94551

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC
LLNL-PRES-641695

h E’%&m BerkEIey % @ Rensselaer SMU F= ot

. “=sa. Outline
FASTMATH

= SUNDIALS Overview
= ODE integration
« CVODE
 ARKode
= DAE integration
 IDA
= Sensitivity Analysis
= Nonlinear Systems
e KINSOL
e Fixed point solver
= SUNDIALS: usage, applications, and availability

h Eaat:'}:?’r%['mes Bel“kelﬁy % Rensselaer SMU &=

=mw._ SUite of Nonlinear and <
MATH Differential-ALgebraic Solvers J‘Jﬂ@.m

= Suite of time integrators and nonlinear solvers

 ODE and DAE time integrators with forward and adjoint sensitivity
capabilities, Newton-Krylov nonlinear solver

e Written in C with interfaces to Fortran and Matlab

e Designed to be incorporated into existing codes

e Modular implementation: users can supply own data structures
— Linear solvers / preconditioners
— Vector structures — core data structure for all the codes
— Supplied with serial and MPI parallel structures

* Freely available, released under BSD license

https://computation.linl.gov/casc/sundials/main.html

h E%Eﬂms Bel“keley % Rensselaer SMU EF=

=mw_ LLNL has a strong history of nonlinear
FASTMATH solver and time integration research

SUNDIALS package evolved from innovation in methods and
software

Newton solvers evolved from the first Newton-Krylov
method and code for PDEs

ODE codes from odepack (> 200K downloads)
DAE codes from DASSL

) S Berkeley @j ®)

Rensselaer @ smMu

=mw._ SUNDIALS offers Newton solvers, time
MATH integration, and sensitivity solvers

e CVODE: implicit ODE solver, y’ = f(y, t)
— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

e IDA: implicit DAE solver, F(t,y,y’)=0
— Variable-order, variable step BDF

— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

e CVODES and IDAS: sensitivity-capable (forward & adjoint)
® Adaptive time step and order selection minimize local truncation error

® KINSOL: Newton solver, F(u) =0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

e Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR
‘ M, Berkeley @ @ Rensselaer @ svu

THE
= UNIVERSITY OF
77 BRITI SH

MATH CVODE solves ¢ = f(t,v)

= Variable order and variable step size Linear Multistep Methods

K, Ko
Z A, iYn—j -+ Atn Z ﬁn,jyn—j =0
§=0 §=0
= Adams-Moulton (nonstiff); K, =1, K, =k, k=1,...,12
= Backward Differentiation Formulas [BDF] (stiff); K, =k, K, =0,k =1,...,5
= Rootfinding capability - finds roots of user-defined functions, gi(t,y)
= The stiff solvers execute a predictor-corrector scheme:

Implicit corrector with y, , as
initial iterate

q q
Yn(0) = Z O‘g')yn—j + Atﬁfy.n—l Yn = Z OYp—j T AtﬁOfn(yn)
=1 j=1

Explicit predictor to give Y

h E%?g’riga?éms Bel“keley % Rensselaer SMU EF=

e Convergence and errors are measured
FASTMATH against user-specified tolerances

= An absolute tolerance is specified for each solution component, ATOL!
= A relative tolerance is specified for all solution components, RTOL

= Norm calculations are weighted by:

. 1 N
ewt' = : : 1 o
RTOL|y' | + ATOL? lyllwrms = J N > (ewtt - y)*
1=1
= Bound time integration error with:
1
lyn = yno)ll < 5

The 1/6 factor tries to account for estimation errors

h Eaat:'}:?’r%['mes Bel“kelﬁy % Rensselaer SMU &=

=mw._[ime steps are chosen to minimize the
-ASTMATH |ocal truncation error

= Time steps are chosen by:
* Estimate the error: E(At) = C(y,, - Yn0)
— Accept step if ||E(At)||wrus < 1
- Reject step otherwise
e Estimate error at the next step, At’, as

E(AY) =~ (A /AT E(At)

e Choose next step so that ||E(At)|| wrus < 1
= Choose method order by:
e Estimate error for next higher and lower orders

* Choose the order that gives the largest time step meeting the
error condition

h Eaé?’r%(lmes Berkelﬁy % Rensselaer SMU &=

=mw._ Nonlinear systems at each time step will
ASTMATH require nonlinear solves

= Use predicted value as the initial iterate for the nonlinear solver
= Nonstiff systems: Functional iteration

q
Yn(m+1) — 50Atnf(yn(m)) + Z On iYn—i
=1

= Stiff systems: Newton iteration

M <yn(m+1) - yn(m)) = -G (yn(m)>

ODE y=r(y) DAE F(g,y) =0
M=~T—~0f/0y V= 50A75 M ~ OF 9y +~0F /8y 7 =1/ (BoAty)

k
G(yn) = Yn — 50Atnf t yn Zan iYn—i = 0 G(yn) =F (t, (ﬁoAtn>_1 Zan,iyn—i, yn) =0

1=1

IIIIIIIIIIII
IIIIIII
CCCCCCCC

h Eaé?’r%(lmes Berkelﬁy % Rensselaer SMU &=

e CVODE offers Newton, Newton-Krylov and
-ASTMATH function iteration as nonlinear solvers

= Non-stiff systems can use function iteration, or a fixed point solver
= Stiff systems generally require a Newton nonlinear solver
e SUNDIALS provides dense solvers or hooks to LAPACK
— Can reuse Jacobian over multiple steps -> modified Newton
 Newton-Krylov solvers only require matrix-vector products
— Approximations to the matrix-vector product are used,

G(y + ev) — G(y)

€

J(y)v =~

— Matrix entries need never be formed

h Eaé?’r%(lmes Berkelﬁy % Rensselaer SMU &=

TR We are adding Runge-Kutta (RK) ODE time

MATH integrators to SUNDIALS via ARKode

RK methods are multistage: allow high order accuracy without long
step history (enabling spatial adaptivity)

Implicit RK methods require multiple nonlinear solves per time step

Additive RK methods apply a pair of explicit (ERK) and implicit
(DIRK) methods to a split system, allowing accurate and stable
approximations for multi-rate problems.

Can decompose the system into “fast” and “slow” components to be
treated with DIRK and ERK solvers

ARKode provides 3™ to 51" order ARK, 2" to 5t order DIRK and 2
to 6t order ERK methods; also supports user-supplied methods.

Applies advanced error estimators, adaptive time stepping, Newton
and fixed-point iterative solvers

ARKode will be released with SUNDIALS later this year
http://[faculty.smu.edu/reynolds/arkode

h E@Eﬂm Bel“keley % Rensselaer SMU EF=

N

“ASTMATH ARKode solves My = fe(t,y)+ fi(t,y)

= Variable step size additive Runge-Kutta Methods:

i—1 2
Mz; = Myn—l + hy, ZAfjfE(tn—l + thnazj) + hn ZAz!,ij(tn—l + thn@),
j=0 J=0

My, = Myn—1+ h, Z bi (fE(tn—1+ cihn,2i) + fr(tn—1+ cihn,2i)),
i=0

Myn = Myn—1 + hy Z bi (fE(tn—1+ Cihn,2:) + fr1(tn—1 + cihn, 2)).
1=0
= ERK methods use A’=0; DIRK methods use A£=0,
= 2z;,i=1,..5 are the inner stage solutions,
= Yn is the time-evolved solution, and
= Y, is the embedded solution (used for error estimation),
= M may be the identity (ODESs) or a non-singular mass matrix (FEM).

h Eaat:'}:?’r%['mes Bel“kelﬁ}’ % Rensselaer SMU &=

=mw_ Initial value problems (IVPs) come in the
FASTMATH form of ODEs and DAEs

= The general form of an IVP is given by

F(t,x,x)=0

x(2,) = x,

e If dF/0x is invertible, we solve forx to obtain an ordinary
differential equation (ODE), but this is not always the best
approach

e Else, the IVP is a differential algebraic equation (DAE)

® A DAE has differentiation index i if i is the minimal number of
analytical differentiations needed to extract an explicit ODE

h Eaa::';dgi:"?éms Befkeley % Rensselaer @ sMuU 5F ot

M‘A%_' IDA solves F(t,y,y’) =0

= C rewrite of DASPK [Brown, Hindmarsh, Petzold]
= Variable order / variable coefficient form of BDF

= Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2
DAEs

= Optional routine solves for consistent values of y, and y,’

o Semi-explicit index-1 DAEs, differential components known,
algebraic unknown OR all of y,” specified, y, unknown

= Rootfinding capability - finds roots of user-defined functions, g;(t,y,y’)
= Nonlinear systems solved by Newton-Krylov method

= QOptional constraints: y'>0,y' <0,y =0,y <0

h E%Eﬂms Bel“keley % Rensselaer SMU EF=

many Sensitivity Analysis

Sensitivity Analysis (SA) is the study of how the variation in the output
of a model (hnumerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation in inputs.
Applications:

 Model evaluation (most and/or least influential parameters), Model

reduction, Data assimilation, Uncertainty quantification,
Optimization (parameter estimation, design optimization, optimal

control, ...)
Approaches:
e Forward sensitivity analysis
e Adjoint sensitivity analysis

h Eaél?’z?rlmes Bel“keley % Rensselaer SMU EF=

N

Parameter dependent system

FSA

Sensitivity Analysis Approaches

F(x,x,t,p)=0
x(0) = x,(p)

ASA

Fs +Fs +F =0
[Farharhuso

s;(0) = dx, /dp; |

g(t,x,p)

dg
_~ S

N

p

(AF.)-%F,=-g,
AFX,=.. att=T
G(x,p) = [, 9(t, x, p)at

dG * *
%ﬂof(gp - AF,)dt - (X F,x,)

T

0

Computational cost:
(1+N,)N

« Increases with N,

h Eaa::'}dgi:"ﬂms Befkeley % Rensselaer @ sMuU 5F ot

Computational cost:

(T+Ng)N, increases with N,

Adjoint Sensitivity Analysis
Implementation

= Solution of the forward problem is required for the adjoint problem >

need predictable and compact storage of solution values for the
solution of the adjoint system

\/ Checkpointing

Cubic Hermite or variable-degree polynomial interpolation
Simulations are reproducible from each checkpoint

Force Jacobian evaluation at checkpoints to avoid storing it
Store solution and first derivative

Computational cost: 2 forward and 1 backward integrations

. Berkeley @ @ Rensselaer @ smu

THE
~ UNIVERSITY OF
H

““=sm. KINSOL solves F(u) =0
MATH

= C rewrite of Fortran NKSOL (Brown and Saad)
= |nexact Newton solver: solves J Au" = -F(u") approximately

= Modified Newton option (with direct solves) — this freezes the
Newton matrix over a number of iterations

= Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab
e Optional restarts for GMRES
e Preconditioning on the right: (J P-")(Ps) = -F

= Direct solvers: dense and band (serial & special structure)

= Optional constraints: u; >0, u,<0,u =0o0ru, <0

= (Can scale equations and/or unknowns

= Backtracking and line search options for robustness

= Dynamic linear tolerance selection
|F(2*) + J (@) < | ()|

h E%%E?{lmes Bel“keley % Rensselaer SMU EF=

“%===. Fixed point and Picard iteration will be
MATH added to KINSOL in the next release

Define an iterative scheme to solve F(h) = h - G(h) =0 as,

Initialize h°.

Fork =0,1,...,until [F(h*)|<T
Set h**" = G(h").

end

Picard iteration is a fixed point method formed from writing F as the
difference of a linear, Lu, and a nonlinear, N(u), operator

F(u)=Lu-N(u); L'N@w)=u-L"Fu)=Gu) |ike Newton with L
1k _L—IF(uk) _ G(uk) approximating J

Fixed point iteration has a global but linear convergence theory
Requires G to be a contraction |G(x)-G(y)|<7|x-y

, r<l

KINSOL will have both Picard and fixed point iterations with acceleration

h E%Eﬂms Bel“keley % Rensselaer SMU EF=

=mw._ SUNDIALS provides many options for
MATH linear solvers

= |terative Krylov linear solvers
e Result in inexact Newton solver
e Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
e Only require matrix-vector products
e Require preconditioner for the Newton matrix, M

= Two options require serial environments and some pre-defined
structure to the data

e Direct dense
e Direct band

= Jacobian information (matrix or matrix-vector product) can be
supplied by the user or estimated with finite difference quotients

h Eaél?’z?(lmes Bel“keley % Rensselaer SMU EF=

=mw._ We are developing a SUNDIALS interface to
—=IMATH sparse direct solvers

= Requires serial vector kernel now — only for transfer of RHS
information for Jacobian systems

= Will generalize to more generic vector interface in the future

= Matrix information is passed via new SUNDIALS sparse matrix
structure which utilizes a compressed sparse column format

= First instantiation is an interface to SuperLU_MT (multi-threaded
version of SuperLU)

= Will also develop interfaces to KLU (serial) and possibly PARDISO
(threaded)

h Eaél?’z?(lmes Bel“keley % Rensselaer SMU EF=

A Preconditioning is essential for large

MATH problems as Krylov methods can stagnate

Preconditioner P must approximate Newton matrix, yet be
reasonably efficient to evaluate and solve.

Typical P (for time-dep. ODE problem)is [— ;/:7, J=J
The user must supply two routines for treatment of P:

o Setup: evaluate and preprocess P (infrequently)

e Solve: solve systems Px=b (frequently)

User can save and reuse approximation to J, as directed by the
solver

Band and block-banded preconditioners are supplied for use with
the supplied vector structure

SUNDIALS offers hooks for user-supplied preconditioning
e Can use hypre or PETSc or ...

h Eaél?’z?(lmes Bel“keley % Rensselaer SMU EF=

Wy The SUNDIALS vector module is generic

= Data vector structures can be user-supplied
= The generic NVECTOR module defines:
A content structure (void *)

* An ops structure — pointers to actual vector operations supplied by
a vector definition

= Each implementation of NVECTOR defines:

e Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid data)

* |Implemented vector operations
e Routines to clone vectors

= Note that all parallel communication resides in reduction operations:
dot products, norms, mins, etc.

h Eaél?’z?rlmes Bel“keley % Rensselaer SMU EF=

== SUNDIALS provides serial and parallel

STMATH NVECTOR implementations

Use is optional

Vectors are laid out as an array of doubles (or floats)
Appropriate lengths (local, global) are specified
Operations are fast since stride is always 1

All operations provided for both serial and MPI parallel cases
Can serve as templates for creating a user-supplied vector

OpenMP and pThreads vector kernels coming soon. Preliminary
performance tests indicate that 10K length required to see benefit

0.014
0.012
0.010
Z 0.008
£ 0.006
0.004
0.002
0.000

Ansel Vector Kernel

Herd Vector Kernel

1000
=== 10000
100000

0.025

0.020 |

0.015

Time (s)

0.010

0.005

1000

== 10000

100000

S——

0 2 4 6 8 10
Number of OpenMP threads

12

0.000

14 0 5 10 15 20 25
Number of OpenMP threads

Sandia
1| Netiora
Laboratories

30 35

Berkeley % Rensselaer @ smu

THE

= UNIVERSITY OF
"] BRITISH

COLUMBIA

24

e SUNDIALS provides Fortran interfaces

= CVODE, IDA, and KINSOL
= Cross-language calls go in both directions:
= Fortran user code <- interfaces <> CVODE/KINSOL/IDA

= Fortran main =2 interfaces to solver routines

= Solver routines - interface to user’s problem-defining routine and
preconditioning routines

= For portability, all user routines have fixed names
= Examples are provided

h Eaél?’z?(lmes Bel“keley % Rensselaer SMU EF=

M‘A_I}_' SUNDIALS provides Matlab interfaces

CVODES, KINSOL, and IDAS

The core of each interface is a single MEX file which interfaces to
solver-specific user-callable functions

Guiding design philosophy: make interfaces equally familiar to both
SUNDIALS and Matlab users

 all user-provided functions are Matlab m-files

» all user-callable functions have the same names as the
corresponding C functions

e unlike the Matlab ODE solvers, we provide the more flexible
SUNDIALS approach in which the 'Solve' function only returns the
solution at the next requested output time.

Includes complete documentation (including through the Matlab help
system) and several examples

| i . THE
B @i, Bekeley @ @ Rensseher @svu B

=mw._ SUNDIALS code usage is similar across
MATH the suite

= Have a series of Set/Get routines to set options
= For CVODE with parallel vector implementation:

4 #include “cvode.h”)
#include “cvode spgmr.h”
#include “nvector *.h”

y = N VNew *(n,..);
cvmem = CVodeCreate (CV_BDF,CV_NEWTON) ;
flag = CVodeSet¥*(..);
flag CVodeInit (cvmem,rhs,t0,y,..);
flag = CVSpgmr (cvmem,..) ;
for(tout = ..) {

flag = CVode (cvmem, ..,y,..); 1}

NV _Destroy(y) ;
\\ CVodeFree (&cvmem) ; ,/

THE
= UNIVERSITY OF

"] BRITISH
COLUMBIA 27

m)ig, Berkeley @ @ Rensselaer @ svu

Se. SUNDIALS has been used worldwide in applications
FASTMATH from research and industry

= Power grid modeling (RTE France, ISU)

= Simulation of clutches and power train parts
(LUK GmbH & Co.)

= Electrical and heat generation within battery cells
(CD-adapco)
= 3D parallel fusion (SMU, U. York, LLNL)

= |mplicit hydrodynamics in core collapse
supernova (Stony Brook)

= Dislocation dynamics (LLNL)

= Sensitivity analysis of chemically reacting flows
(Sandia)

Core collapse
supernova

= Large-scale subsurface flows (CO Mines, LLNL)

= Optimization in simulation of energy-producing
algae (NREL)
More than 3,000
= Micromagnetic simulations (U. Southampton) qownloads each year

Subsurface flow

THE
UNIVERSITY OF

BRITISH
COLUMBIA 28

Rl u), Berkeley @} Rensselaer @ sMU

| ey

AT MATI Availability

Open source BSD license
https://computation.llnl.gov/casc/sundials
Publications

https://computation.llnl.gov/casc/sundials/
documentation/documentation.html

Web site:
Individual codes download

SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team:
Alan Hindmarsh, Radu Serban,

Dan Reynolds, Carol Woodward,
= and Eddy Banks

THE
UNIVERSITY OF

argonne ™ 01 m)ie, Berkeley @]’ @ Rensselaer @ sMU

BRITISH
/ COLUMBIA 29

